Blue Flower

Fluorescence refers to the ability of an atom or molecule to absorb light and emit at different wavelengths. Because slight variations in the surrounding environment can cause large changes in fluorescence properties, reporter molecules are used as sensitive probes. At the microscopic level, fluorophores are linked to cellular biochemistry. Illumination and detection at the proper wavelengths can therefore reveal variations in pH, ion concentration, nucleic acids, and proteins. Resulting images appear "bright" on a dark background.

Light levels resulting from fluorescent molecules are usually very low and overexposure to light can cause photobleaching. Roper Scientific's cooled CCD cameras allow researchers to minimize photobleaching by providing extremely high sensitivity.

Whereas photomicrography and video microscopy are frequently useful in subjective analysis, higher precision and sensitivity are needed to produce quantitative results. Camera response linearity over a wide range of intensities is required when numerical algorithms (i.e., deconvolution, ratiometric analysis, morphometry) are applied to a single image or an image stack. Furthermore, higher-spatial-resolution cameras provide detailed information within a large field of view. Finally, the high dynamic range of Roper Scientific's CCD camera systems allows dim objects (i.e., neuronal processes) and relatively bright objects (i.e., cell bodies) to be viewed and measured within the same image.

Fluorescence 
 
Bovine pulmonary artery endothelial cells (Molecular Probes Fluocells #2) are shown as a three-color composite image. Images were individually acquired in the spectral bands corresponding to the fluorophores BODIPY, Texas Red, and DAPI showing the distribution of tubuli, F-actin, and nuclei respectively. Sequential acquisitions of this type allow for separate image optimization and therefore can compensate for differences in probe concentration and camera sensitivity.